M1. (a) (i) M1 The peak of the new curve is displaced to the right.
M2 All of the following are required

- The new curve starts at the origin
- The peak of the new curve is lower than the original
- and the new curve only crosses the original curve once
- and an attempt has been made to draw the new curve correctly towards the energy axis but not to touch the original curve
- the new curve must not start to diverge from the original curve M1 is low demand M2 is higher demand.
(ii) M1 Increase in the number/proportion of molecules with $E \geq E_{\mathrm{a}}$

OR more molecules have $E \geq E_{a}$
OR more molecules have sufficient energy to react
M2 More effective/productive/successful collisions Ignore "molecules have more energy"
Ignore "more energetic collisions"
Ignore "molecules gain activation energy" lgnore "more collisions"
Accept "particles" for "molecules" but NOT "atoms"
Ignore "chance of collision"; this alone does not gain M2
(b) (i) Iron OR Fe
(ii) M1 Catalysts provide an alternative route/pathway/mechanism OR
(in this case) surface adsorption/surface reaction occurs.
For M1, not simply "provides a surface" alone

OR

lowers the activation energy
For M2, the candidate may use a definition of activation energy without referring to the term

M2. (a) minimum energy
to start a reaction/ for a reaction to occur/ for a successful collision
(b) activation energy is high / few molecules/particles have sufficient energy to react/few molecules/particles have the required activation energy
(or breaking bonds needs much energy)
(c) molecules are closer together/ more particles in a given volume
therefore collide more often
(d) many
more molecules have energy greater than activation energy (QoL)
(e) speeds up a reaction but is chemically unchanged at the end
(f) increases the surface area

M3. (a) (i) M1 drawn curve starts at reactants and ends at products
Tapered lines into the original curve gain credit for M1
M2 curve peak is below the one drawn in the question (and may show one/two humps)

Mark M1 and M2 independently
(ii) Exothermic (reaction)

Ignore " ΔH is negative"
(iii) $\quad \Sigma$ bond (enthalpy) reactants $<\Sigma$ bond (enthalpy) products

The sum for H_{2} and $\mathrm{I}_{2} /$ reactants is less than/lower than/smaller than the sum for $2 \mathrm{HI} /$ products
OR
The sum for $2 \mathrm{HI} /$ products is more than/larger than/bigger than the sum for H_{2} and $\mathrm{I}_{2} /$ reactants

Accept "lt OR the sum will be smaller or less"
(iv) $\mathbf{M} \mathbf{1} p$
$\mathbf{M 2}-(q-p)$
OR
$p-q$
OR
$-q+p$
M2 demands that the sign for an exothermic reaction is part of the outcome mathematically.
Ignore case
(b) (i) Increase/speed up/faster (rate of attainment of equilibrium)

Increase/speed up/faster rate of both forward and reverse reaction

OR

Increase/speed up/faster rate of reaction
Credit "It took less time"
(ii) M1 Increase/speed up/faster (rate of attainment of equilibrium)

M2 More particles/molecules in a given volume/space $O R$ the particles/molecules are closer together $O R$ an increase in concentration.

M3 More/higher chance of successful/effective/productive collisions (between particles)
OR more collisions/higher chance of collisions (of particles) with E>E ${ }_{\text {act }}$
If M1 is blank, mark on and credit M1 in the text
If M1 is given as "decrease"/"no effect"/"no change" then $C E=0$ for clip
In M1, if increase both the forward and reverse reaction, but no mention of rate, penalise M1 but mark on.
In M1, if increase either forward rate or reverse rate only, then penalise M1 but mark on.
Penalise M3 if an increase in the value of $E_{A c}$ /energy of particles is stated.
Max 1 for M2 and M3 if reference to "atoms"

M4. (a) Equation $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

$$
\Delta H f=[(945 \times 0.5)+(426 \times 1.5)]-(391 \times 3)
$$

$$
=-46.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\left.\begin{array}{|c|c|}\hline \text { Mark } & \begin{array}{l}\text { The marking scheme for this part of the question includes an overall } \\ \text { assessment for the Quality of Written Communication (QWC). There } \\ \text { are no discrete marks for the assessment of QWC but the } \\ \text { candidates' QWC in this answer will be one of the criteria used to } \\ \text { assign a level and award the marks for this part of the question } \\ \text { Descriptor }\end{array} \\ \text { an answer will be expected to meet most of the criteria in the level } \\ \text { descriptor }\end{array}\right]$
(b) The higher the temperature the faster the reaction QWC
but, since the reaction is exothermic
the equilibrium yield is lower QWC

The higher the pressure the greater the equilibrium yield QWC
because there is a reduction in the number of moles of gas in the reaction

but higher pressure is expensive to produce or plant is more

 expensive to build QWCA better catalyst would lessen the time to reach equilibrium
and allow more ammonia to be produced in a given time QWC

OR

Oxidised ONLY
(ii) Any one from

- to provide/overcome activation energy
- to provide the minimum energy to make the reaction go/start NOT simply to increase the (initial) reaction rate.
(iii) The reaction is exothermic OR releases heat (energy)
(iv) M 1

Catalysts provide an alternative route/pathway OR an alternative mechanism

OR

(in this case) surface adsorption occurs (or a description of adsorption)

Ignore reference to "surface" alone
M2
Lowers the activation energy
(b) M 1

The (forward) reaction is exothermic OR the (forward) reaction releases heat

OR
The reverse reaction is endothermic or absorbs heat
M2 - Direction of change N.B. M2 depends on correct M1
At lower temperatures,

- the equilibrium yield of NO_{2} is greater
- more NO_{2} is formed
- equilibrium shifts (left) to right
- (equilibrium) favours the forward reaction
($O R$ converse for higher temperatures)
(c) $\mathrm{NO}_{2} \quad(+) 4$
$\mathrm{NO}_{3}^{-} \quad(+) 5$
$\mathrm{HNO}_{2} \quad(+) 3$
[10]

M6. (a) Peak lower
and moved to right
start at the origin and curve crosses once only
(b) (i) (Rate of reaction) increases
(At a higher temperature) more molecules/particles
have the minimum energy needed to react/have activation energy/have successful collisions

Mark CE if incorrect effect given
(ii) (Rate of reaction) increases 1
lowers activation energy 1
so that more molecules are able to react 1
Mark CE if incorrect effect given

